DataRay Blog

Pulsed Lasers: Pulse Energy & Imager Gain

This is the third entry in a series of blog posts that explore DataRay’s pulsed laser measurement capabilities. The previous blog posts provided an overview of pulsed lasers and covered how individual pulses can be measured using Auto-Trigger mode or External Trigger mode to synchronize exposures to single pulses. This blog post will talk about the energy requirements involved with measuring pulsed lasers, and how the received signal can be controlled when the exposure time is fixed.

Pulsed Lasers and External Trigger Mode

In our previous blog post, we provided an overview of pulsed lasers and how the exposure time of a camera must synchronize with a laser pulse to provide an accurate measurement. We talked about how Auto-Trigger Mode can be used to measure pulsed lasers with no formal synchronization by setting an appropriate exposure time and rejecting partial pulse captures. This blog post will now talk about how an external trigger can be used to formally synchronize the exposure time to the pulse width. This External Trigger mode provides more versatile and precise measurements of pulsed lasers.

When to Use the D86 Beam Width Measurement Method

Although the clip level method and the second moment method are the most popular methods of beam width measurement, other beam width measurement techniques such as the D86 method can be used with beam profiling cameras. Rather than using the 1D or 2D profile of the beam to determine the width, the D86 method uses the diameter of a 86.5% power enclosure as the beam width. In this blog post we describe the D86 beam width measurement method and the applications for which it is most appropriate.